The Billionaire Doctor Who Plans to Cure Cancer

Dr_Patrick_Soon-Shiong_(14212355607)
Dr. Patrick Soon-Shiong (courtesy Wikimedia Commons)

Recently, I had the opportunity to speak to billionaire surgeon-inventor Dr. Patrick Soon-Shiong about his plans, both private and through the Cancer Moonshot 2020, to cure cancer.

Soon-Shiong, who made his fortune by founding and selling two pharmaceutical companies, has gathered a group of pharmaceutical companies, academic institutions, and insurers to spur cancer research and to attempt to make breakthrough gains by the year 2020. This effort dovetails with the Obama administration’s $1B plan to fund cancer research led by Vice President Joe Biden, whose son, Beau, recently died after a long struggle with brain cancer.

Soon-Shiong’s path to cancer research began while doing research for NASA that involved harnessing stem cells to make insulin. He stumbled upon a paper that reported that the binding of zinc to the blood protein albumin is what transposes it into pancreatic islet cells, enabling the production of insulin.  This discovery led to an “aha” moment.   “A light bulb went on. In fact you should feed the tumor, not stop the tumor.  And if you could take a nanoparticle of albumin and attach Taxol [a common cancer drug] at the core, then it [the tumor] would take up the albumin and kill itself, like rat poison.”  This revelation led to his creation of the cancer drug Abraxane, or albumin-bound paclitaxel (Taxol).  Abraxane is used currently in a wide variety of cancers, including breast, lung and pancreatic cancer. “To this day, oncologists don’t understand the mechanism of action of Abraxane,” he said,  “They think of it as another form of Taxol.”  According to Soon-Shiong, Abraxane works so well is because the binding to the blood protein albumin allows it to penetrate cancer tissues better.

Abraxane has had huge clinical and commercial success, but he says the path to getting there wasn’t easy.  Initially, after developing Abraxane, he approached large pharmaceutical companies but was unable to gain support despite showing that it had remarkable results in animal models.  He was forced to make the painful decision to leave a secure academic career to risk launching his own company.  His risk paid off.  He ultimately founded both APP Pharma and Abraxis BioScience to support his work.  In the end, APP Pharma was sold to Fresenius SE for $4.6B and Abraxis BioScience was sold to Celgene for $4.5B.  Then, in 2011, he founded NantWorks, a holding company with a portfolio of firms to pursue his diverse entrepreneurial interests.  One of these is NantHealth, a company that has developed a fully integrated digital health platform to collect and analyze genomics and proteomics data on cancer research patients.

Soon-Shiong, a bit of an heretic in the world of oncology, has ideas that veer from the traditional approach to cancer treatment.  One example is how he wants to harness patients’ natural immune abilities to treat their cancers.  “As we sit here speaking, we are creating 10,000 cancer cells a day.  And the natural killer cells in your body are monitoring it and killing it,” he said, “Cancer is a normal evolutionary process.  And guess how we’re trained as oncologists?  To give you the maximal tolerated dose of drugs to kill those natural killer cells that are protecting you, which makes no sense.  This is the dogma in oncology and even in drug development.”

He’d like to see drugs given at lower doses to cause what he calls “cytostress” instead of “cytotoxicity”.  The natural killer cells of our bodies look for cells that are under stress (by detecting distinct proteins and enzymes that are released) and then destroy those cells.  He suggests that chemotherapy should be administered at what he calls the “lowest effective dose” instead of the much higher “maximal therapeutic dose” typically given in clinical trials for cancer.  The lowest effective dose, he argues, won’t completely wipe out patients’ immune systems, and thereby allow patients’ natural killer cells to target “cytostressed” cancer cells.  He argues that this approach will revolutionize cancer treatment and lead to more cures and cites numerous personal anecdotes when this approach has worked for his patients.

Unfortunately, for the time being, he’s had a difficult time convincing oncologists and drug companies to move away from what he calls the “schizophrenic dichotomy” of treating with the maximal therapeutic dose that destroys natural immune function.

Another challenge to finding a cure for cancer, according to Soon-Shiong, is developing health IT systems to support cancer research.  “Cancer is really a rare disease,” he said, “Because of the molecular signature, because of the heterogeneity, no single institution will have enough data about any [single] cancer.  So you actually need to create a collaborative overarching global connected system.”  He continued, “The problem is now you have the other obstacle to the advance of medicine and the cure of cancer…it is going to be bombastic, dogmatic IT.”  In order to solve this problem, Soon-Shiong is collaborating with other health IT experts in the Commonwell Alliance to facilitate the development of the digital architecture needed to support the interoperability of electronic medical records.

His critics question the sheer breadth of the projects he’s begun under his NantWorks empire, but Soon-Shiong seems too consumed with making his ideas a reality to worry about critics.  At a time when one might expect him to retire, he seems to be only just beginning. “At this point in my career, it’s just:  let’s show that there are patients that are alive.  Let’s show we’ve created less suffering in cancer patients and then expand it globally.”

Cool Startup: twoXAR

Andrew Radin x 2
Andrew M. Radin (left) with friend and twoXAR business parter Andrew A. Radin.


It’s not every day that you meet someone with the same name as you. And it’s even less likely this person will have similar interests and be someone with whom you might want to start a business.

But that’s exactly the story of the two Andrew Radins, founders of twoXAR.

Chief Business Officer Andrew M. Radin met his co-founder and Chief Executive officer Andrew A. Radin battling over a domain name–you guessed it–andrewradin.com.  About six or seven years ago, the former asked the latter, who owned the domain, if he could buy it from him and was told (in not so many words) to get lost.

Somehow, this exchange sparked a friendship, first on Facebook, then through commonalities such as travel to China, working in science and tech and their independent, entrepreneurial pursuits.  A little over a year ago, as Andrew A. Radin completed work on a computational method to enhance drug and treatment discovery, he naturally thought of joining forces with his namesake and friend, Andrew M. Radin.

For Andrew M. who was just completing his MBA from MIT Sloan, the timing was right and the discovery compelling enough to turn down other appealing job offers and join Andrew A. in forming the aptly named twoXAR (pronounced TWO-czar). Based in Silicon Valley, the company predicts efficacy of drug candidates by applying statistical algorithms to various data sets.We caught up with Andrew M. Radin recently to hear about their exciting new venture and their progress.

Tell us about what you do at twoXAR.

We take large diverse, independent data sets including biological, chemical, clinical etc.–some subsets include gene expression assays, RNA-seq, protein binding profiles, chemical structure, drug libraries (tens  of thousands of drugs), whatever we can get our hands on–and use statistical algorithms to predict efficacy of drug candidates in a human across therapeutic areas. The raw output from our technology (DUMA Drug Discovery Platform) is the probability of a given drug to treat a given disease. It all takes only a matter of minutes.

Where do you get your data sets?  Are they from clinical trials?

Some of our data comes from clinical trials, but we pride ourselves on using data sets that are largely independent from each other and come from a variety of sources along the biomedical R&D chain–as early as basic research and as late as clinical data from drugs that have been on the market for 30 years.  All of these data sets are extremely noisy, but we specialize in identifying signal in this noise then seeking overlapping evidence from radically different data sets to strengthen that signal.

These data come from proprietary and public sources. The more data we have, the better results DUMA delivers.

Could you give an example of how you could use this tool in pharmacologic research?

Our technology allows us to better characterize the attributes of a disease beyond just gene expression. We can examine how a drug might be related to a myriad of informational evidence streams allowing a researcher to build more confidence on a prediction for drug efficacy.

Let’s take Parkinson’s Disease as an example. Existing treatments focus on managing the symptoms. The real societal win would be to stop, and possibly reverse, the progression of the disease altogether. This is what we are focusing on.

In Parkinson’s disease, we’ve acquired gene expression data on over 200 Parkinson’s patients sourced from the NIH and examined over 25,000 drug candidates and have found a handful of promising candidates across a variety of mechanisms of action.

So you can “test out” a drug before actually running a clinical trial?

That’s the idea. Using proprietary data mining techniques coupled with machine learning, we’ve developed DUMA, an in silico drug discovery platform that takes a drug library and predicts the probability of each of those drugs to treat the disease in question in a human body. We can plug in different drug libraries (small molecules, biologics, etc.) and different disease data sets as desired.

At this stage we are taking our in silico predictions to in vivo preclinical studies before moving to the clinic. Over time we aim to demonstrate that computational models can be more predictive of efficacy in humans than animal models are.

It seems, intuitively, that this would be really valuable, but I would imagine that your clients would want to see proof that this model works.  How do you prove that you have something worthwhile here?

Validation is critical and we are working on a number of programs to demonstrate the effectiveness of our platform. First, we are internally validating the model by putting known treatments for the disease into DUMA, but blinding the system to their current use. If in the results the known treatments are concentrated at the top of our list we know it’s working. Second, we take the drug candidates near the top of the list that are not yet known treatments and conduct preclinical studies with clear endpoints to demonstrate efficacy in the physical world. We are currently conducting studies with labs who have experience with these animal models to publish methods for peer-reviewed journals.

You have a really advanced tool to come up with potentially great treatments, but what’s to say that’s better than what’s going on out there now?  How do you prove it’s better or faster? 

If you look at drug industry trends, the top drug companies have moved out of R&D and become marketing houses–shifting the R&D risk to startups and small and medium drug companies. Drug prospecting is recognized to be extremely risky and established methods have produced exciting results in the past but have, over time, become less effective in striking the motherlode. Meanwhile, the drug industry suffers from the same big data woes as many industries–they can produce and collect petabytes and petabytes of data, but that goldmine is near-worthless if you don’t have the tools to interpret it and extract the gold. Advances in data science enable twoXAR to analyze, interpret, and produce actionable results with this data orders of magnitude faster than the industry has in the past.

It seems that this could be scaled up to have many different applications.  How do you see twoXAR transforming the industry? 

In regards to scale, not only can computational platforms look at more data faster than humans without bias, much smaller teams can accomplish more. At twoXAR, we have a handful of people in a garage and we can essentially do the work of many wet lab teams spanning multiple disease states. Investors, researchers, and patient advocacy groups are very interested in what we are doing because they see the disruptive potential of our technology and how it will augment the discovery of new life-saving treatments for our families and will completely recast the drug R&D space. One of the things I learned at MIT from professors Brynjolfsson and Little is that the increasingly exponential growth of technological progress often takes us by surprise. I predict that tectonic shifts in the drug industry will be coming much quicker than many folks expect.

To learn more about twoXAR, visit their website and blog.

This article was originally published on MedTech Boston.