GV’s Approach to Healthcare Investing: An Interview with Dr. Krishna Yeshwant

google-ventures-story

Please note:  This article was originally published on TechCrunch.com.

Healthcare investments — in particular, investments in digital health — are booming, and don’t seem to be slowing down. According to CB Insights, digital health funding hit nearly $5.8 billion in venture funding last year, surpassing the previous record of $4.3 billion in 2014.

One of the top venture firms, GV (previously known as Google Ventures), recently came out with their year in review, revealing that more than one-third of their investments are in the life sciences and healthcare. (They currently have $2.4 billion under management.) “I can think of no more important mission than to improve human health and global quality of life,” CEO Bill Maris said in a recent announcement.

One of the strengths of the GV life science and health investment team is having a diverse mix of PhDs and MDs as investors, including general partner Dr. Krishna Yeshwant. Yeshwant continues to practice internal medicine part-time at Brigham and Women’s Hospital in Boston, and credits that with helping to keep him in touch with the challenges facing healthcare.

I recently sat down with Yeshwant to talk about GV’s investment strategy.

Yeshwant started his career, interestingly, studying computer science at Stanford. From there, he helped found two tech companies, which were eventually acquired by Hewlett-Packard and Symantec. He could have successfully continued on his path in tech, but decided instead to go to medical school after his father became ill and needed a cardiac bypass. “I remember just being in the hospital thinking this is just messed up. There are so many areas for improvement,” he said.

He went on to pursue an MD-MBA at Harvard. During this time, he became involved in a lot of medical-device work, and even started a diagnostics company. This work eventually led him to work with Bill Maris at Google Ventures.

Thus far, one of GV’s largest investments has been with Flatiron Health, an oncology-focused technology company based in New York City. According to Yeshwant, the concept was developed by two former Google employees who received support from GV. “Flatiron is basically integrating EMR’s (electronic medical records) in the outpatient and hospital setting,“ said Yeshwant, “and it provides data back to physicians as well as aggregating data to aid with discovery and help with regulatory processes.”

Others have also recognized Flatiron’s enormous potential. Flatiron recently announced they received $175 million in Series C funding from Roche Pharmaceuticals. In addition to the funding, Roche plans to be a subscriber to Flatiron’s software platform. Their hope is to use the platform to identify and bring innovative treatments to market faster.

Yeshwant strongly believes in the need for more tech solutions in healthcare like Flatiron Health. “There’s a fundamental need for infrastructure. A single disease type of lung cancer is actually lots of diseases. Other more complex diseases are going to need more data sets, multisite trials, and we need to create infrastructure for that,” he said.

It’s hard to argue with him on that point. Massive amounts of biometric data are being collected in healthcare right now, but there aren’t nearly enough tools for storage, communication and analysis of that data. There’s a great deal of opportunity for healthcare startups that can specialize in data management and analysis.

Three such companies in which GV has invested in this space are Metabiota, which provides risk analytics to prevent and reduce epidemics; Zephyr Health, which uses global health data and machine learning to provide treatment insights to pharma and medical device companies; and DNAnexus, a company that helps companies store their genetic information.

“Once you’re in a world where you can scale up and down your computational analysis, you can ask lots of simultaneous questions of your aggregated data sets and that’s well suited to the cloud environment,” said Yeshwant. “We invest heavily in those spaces.”

Besides software-based companies, GV is investing in a diverse range of other types of companies in healthcare and the life sciences. One such area is the genomics space. Thus far, GV has made major investments in Editas, a CRISPR gene-editing company; 23andMe, which offers chromosomal analysis to consumers; and Foundation Medicine, a company that offers genomic analysis of various cancers.

Yeshwant also feels one of the biggest challenges (and opportunities) in healthcare is helping healthcare organizations shift from fee-for-service to fee-for-value. “That’s the direction we’re going,” he said. “How do we migrate big systems in that direction? That’s the fundamental question.”

GV therefore has made some significant investments in companies that are shaking up the traditional provider model, including the telemedicine company Doctor on Demand and the innovative primary care provider, One Medical Group. “Anything you can do to move healthcare from a high cost setting to a low cost setting is generally going to be successful in that model,” said Yeshwant. “Telemedicine is a good example of that. We have a company called Spruce Health which is essentially asynchronous care. Value based care is a big area for us.” (Spruce Health is a platform for dermatologic care.)

Yeshwant hinted that future projects may be in the areas of population health and chronic disease management, investment in companies that engage consumers directly and possibly even some work in women’s health. One thing’s for sure: We can expect more exciting things to come in 2016 and beyond for GV.

 

 

Cool Startup: GenoSpace

daniel meyer

Healthcare is drowning in a deluge of data. Decision-makers must somehow make sense of a heterogeneous array of information — demographic, clinical, patient-generated, treatment and outcomes data. The latest waves of information also include data from mHealth and genomic sources. It’s not hard to imagine that many in the healthcare industry suffer from information overload and struggle with a bit of ‘analysis paralysis.’ How can organizations make sense of all this big data and actually harness it to improve healthcare and outcomes?

One company helping answer this question is GenoSpace, an ambitious genomic and health data management startup based in Cambridge, Mass. Its current chairman, John Quackenbush, and CEO, Mick Correll worked together in the Center for Cancer Computational Biology at Dana Farber before co-founding the company in 2012. Contracts with notable customers like the Multiple Myeloma Research Foundation (MMRF) and PathGroup funded GenoSpace before the first round of outside funding in 2014.

It was around that time that GenoSpace hired Daniel Meyer, an entrepreneur with a background in venture capital, as Chief Operating Officer. According to him, it was GenoSpace’s ability to attract high-quality customers early on (a rarity for most early-stage companies in life sciences) that convinced him to join. Recently, we sat down with Meyer to learn more about how GenoSpace helps healthcare organizations make sense of all the big data.

Tell us about what you do at GenoSpace.

When you’re dealing with genomics and other biomedical data, there are a variety of different users and reasons for their use. So you could have an institution that has users engaged in research, clinical development, lab medicine and clinical care. They have different software application needs that cut across the same or similar data sets. One of the things we try to do is develop the tools, the interfaces and the experience that will enable all of those different people to get the most from the data.

Could you go over your major offerings?  

We have three primary categories of offerings: analysis and interpretation of a single assay result together with phenotypic and other clinical data, interactive analysis of data from many individuals as a group, such as from a large observational study (where we really excel is when a customer has integrated demographic, clinical, genomic, treatment, outcomes and other data) and enabling patients to directly report and interact with their data. We’ve created software applications and web-based sites for patients to upload their data, track their results and better understand their condition. Although we have a core competency in genomic data, we do not only deal with genomic data.  Research and clinical care rarely rely solely on a single data type.

Now that Obama has announced the Precision Medicine Initiative expanding genomic study, do you also expect your work to expand?

We think it’s a fascinating announcement and those are the types of initiatives we support. One of the interesting things is that we have customers right now solving many of the problems that the initiative will face. For example, we have been working with Inova, a healthcare system based in Northern Virginia that serves more than two million people per year in the metro DC area. They have been collecting a rich set of whole-genome sequencing data together with structured clinical data on thousands of people. Their data management and analysis needs map directly to those of precision medicine initiatives like the one announced by the White House.

I’d imagine that you’d have greater demand on the private side.  

We have spent most of our time there. Our first clinical lab customer, PathGroup, is delivering industry-leading molecular profiling across a wide geographic footprint, including to some big cities in their coverage area and also smaller cities and towns.  Our ability to help them bring academic-quality medicine to community oncology is a huge impact. Roughly 85% of oncology patients are treated in a community setting. If you’re only deploying in major cities with academic medical centers, you’re missing out.

What are your next plans? Any new projects or goals?

We are  looking to expand to different customer use cases. That can be in terms of the therapeutic indication, such as rare diseases, neurologic or cardiac disease. But it can also be integrating different kinds of data. We have a lot of experience working with demographic, diagnostic, treatment and outcomes data together with genomic results, and there are more opportunities to expand.

Are you also working on using machine learning to do predictive analytics?

We think about that a little differently. There’s supervised analysis, the user asking questions and getting answers about the data, and there’s unsupervised analysis. For many of our customers, they’re not looking for a black box. Our goal is not to replace molecular pathologists, but to work hand in hand with them to make sure their work is better, more operationally efficient and more sustainable, particularly if it’s a commercial entity.

That last piece is underappreciated by a lot of folks. We do a lot of work in genomics and in precision medicine and there’s a lot of science and advanced technology. All that work is lost in most settings if you don’t deliver it properly. You have to understand the science and the innovation, but also how to get it in the hands of people who can impact patients. That’s a big part of what we do.

Any final thoughts?

One of the fun things about being here is we have folks with a lot of different capabilities—in software engineering, interactive design, data science, etc. For a lot of the interesting problems that people are trying to solve in medicine, it takes that interdisciplinary team approach as opposed to a whole bunch of people with the same type of experience.

To learn more about GenoSpace, visit their website at genospace.com or follow them on Twitter at @GENOSPACE.

This article was originally published on MedTech Boston.

What’s Hot in Boston Biotech

Xconomy

Popular business and technology news site Xconomy held its eighth annual life sciences forum on April 8, 2015 at the Broad Institute in Cambridge, Mass. This year’s theme was “What’s Hot in Boston Biotech” and drew a who’s who of industry leaders, scientists, and entrepreneurs. The sold-out event packed the 250-seat auditorium of the Broad Institute and drew a dynamic crowd from all segments of the life sciences industry.

So, the burning question… what is hot in Boston biotech?

New Treatments for Neurodegenerative Diseases

Adam Koppel, Senior VP and Chief Strategy Officer at Biogen, discussed exciting new treatments that are in the pipeline for some of the most challenging neurodegenerative disorders. Highly anticipated medications include aducanumab for Alzheimer’s disease, anti-LINGO for multiple sclerosis, and ISIS-SMN for spinal muscular atrophy. Aducanumab has gotten a lot of attention in the news recently as a result of the positive results of a clinical trial showing a dose and time-dependent reduction in amyloid plaque.

Another company working on therapies for Alzheimer’s (and other neurodegenerative diseases such as Parkinson’s and ALS) is Yumanity. Tony Coles, CEO, and Susan Lindquist, Scientific Founder, discussed Yumanity’s use of yeast as a neuronal model that could tackle the protein folding problems at the root of many neurodegenerative diseases.

Exciting Frontiers in Synthetic Biology

James Collins, Professor of Medical Engineering and Science at MIT, and Amir Nashat, Managing Partner at Polaris Partners, discussed new opportunities in synthetic biology. Notable innovations include the development of therapeutics and diagnostics that can be affordably embedded in paper, cloth, or made into pellet form, as well as the synthetic engineering of microbes to fight diseases. The speakers also discussed the importance of ethical considerations and the need for safeguards as this area of science advances.

Immuno-Based Cancer Therapies

Chuck Wilson, CEO and President of Unum Therapeutics, and Ben Auspitz, Partner at Fidelity Biosciences, discussed a bold new avenue for cancer treatment that involves re-engineering a patient’s own T-cells with antibodies that respond specifically to their cancers. Currently, the therapy has been successfully used in the treatment of acute lymphoblastic leukemia, but it holds great potential in treating other cancers – and also for possibly developing a cancer vaccine.

Harnessing the Microbiome 

Another exciting area of research in biotech is in the development of therapies that aim to modulate the microbiome to treat disease. Bernat Olle, Principal of PureTech Ventures, and Marian Nakada, VP of Venture Investments at JNJ Innovation, spoke about a joint venture – Vedanta Biosciences – focusing on microbiome treatments for autoimmune and inflammatory diseases.

The Future of Genetic Therapy

In a fantastic panel on the potential and pitfalls of gene therapy, led by moderator Michelle Dipp, Co-founder and CEO of Ovascience, panel members discussed the fact that gene therapy is still in its nascency. Many underestimate the time that it will take to develop effective therapies. Panel members included: Steven Paul, President and CEO of Voyager Therapeutics; Olivier Danos, SVP of Gene Therapy at Biogen; and Peter Kolchinsky, Managing Member and Portfolio Manager at RA Capital Management. Other challenges are in developing better gene vectors and anticipating how the broad adoption of genetic carrier testing in the future may affect the development of gene therapies.

The Potential of Precision Medicine

Samantha Singer, COO of the Broad Institute, moderated an interesting panel on precision medicine, with speakers David Altschuler, Executive VP of Global Research and CSO of Vertex Pharmaceuticals, and Alexis Borisy, Chairman of Foundation Medicine and Partner at Third Rock Ventures. Altschuler said that the advantage of precision medicine is that it will enable companies to target therapies more specifically and to “fail less often.” Efficiency, pace, and the success of drug development are likely to be enhanced as a result of better knowledge of the genetic basis of disease.

Scalability Challenges

Noubar Afeyan, Managing Partner and CEO of Flagship Venture, gave an entertaining talk about the challenges and opportunities of the biotech industry in Boston and Cambridge. He shared that he felt this was an unprecedented environment for biotech, in large part due to the co-existence and collaboration of large biotechs and pharmas along with smaller, entrepreneurial companies that engaged in more radical innovation.

He went on to discuss that he felt that scalability was the biggest challenge for Boston biotechs, in terms of resources, people, the process, and other externalities (such as space, the regulatory environment, and the development of partnerships). This is where much of the focus should be in the industry in order to encourage further growth.

This story was originally published at MedTechBoston.com.

Precision Medicine: Pros & Cons

m150_2_014i
23 chromosomes (image from Scientific American)

This past week, President Obama announced a $215 million proposed genetic research plan, called the Precision Medicine Initiative.  According to the plan,  the NIH would receive $130 million towards a project to map the DNA of 1 million people, the National Cancer Institute would receive $70 million to research the genetic causes of cancer, the FDA would receive $10 million to evaluate new diagnostic drugs and devices, and finally, $5 million would be spent on tech infrastructure to analyze and safely store this data.

Not surprisingly, this announcement sparked some online controversy.  If internet pundits are to be believed, this plan is going to prevent you from ever finding a mate, an employer, get health insurance, cause us all to become part of a giant genetic experiment to tailor human beings, and will also put us into crippling debt and line the pockets of Big Pharma.  I’m not even sure I covered it all…The complaints ranged from reasonable to ridiculous.  The most amusing are the conspiracy theorists who are certain that Obama must be plotting a genetic apocalypse.

But, in all seriousness, I have to admit I have concerns as well, despite being mostly optimistic about this news.

Here are some of the exciting positives offered by the precision medicine plan:

  • New diagnoses:  We may finally be able to identify genetic causes of diseases that were previously unknown.
  • Prevention vs. disease management:  Knowing genetic risks ahead of time can help us to focus more on preventing disease rather than reacting after-the-fact, once the disease occurs.
  • Early diagnosis:  We may be able to detect diseases earlier and at a more treatable stage.
  • Protective genes:  Some people have certain genes that protect them against diseases or prevent them from “expressing” their bad genes.  Studying these differences may help us to learn how to protect ourselves against those diseases.
  • Drug development:  Therapies can be developed in a faster and more efficient way by targeting certain genetic problems, rather than using the traditional trial-and-error method.
  • Personalized treatments:  Treatments can be tailored to a patient’s unique genetic aberration and we can avoid giving treatments to patients that we know may cause adverse reactions or that will fail to work.
  • Population health:  We can study genetic patterns in populations of patients to find out causes of diseases, develop treatments, and find ways to prevent disease.
  • Healthcare costs:  There’s a potential to reduce healthcare costs if focus changes to prevention rather than treatment of disease and also if we can streamline drug development.

But, let’s also look at the potential downsides:

  • Data storage:  We already know that gene sequencing of an individual produces MASSIVE amounts of data.  The sequencing of a million people is going to produce unimaginable amounts of data.  How will we store all this big data and analyze it to make any sense of it?
  • Privacy/Security:  Is there anything more personal and vulnerable to cyber-attack than your genetic information?  I wonder if the $5 million allotted to this effort will really be enough.
  • Data relevance:  According to Obama, the data will be collected from 1 million volunteers.  That’s not a random cross-section of people in the US and may not represent the population adequately in order to make population health recommendations.  I’d argue that only certain types of people would sign up and other types won’t.  Would we miss certain disorders? Would we see too much of another disorder in a population of volunteers for this project?
  • Culture:  How do we prevent people from abusing this information and not using it to screen potential partners, deny insurance coverage, denying jobs?  How will this affect culture?  Will we be cultivating a different kind of racism, on a genetic basis?  Are we on the path to a real-life version of the movie Gattaca?
  • Ownership:  Who will claim ownership of this data?  Will it be the government?  I’d argue that this data should be owned by the individuals from whom it comes, but the experience of the genetic sequencing (now genetic ancestry) company 23 & Me is worrisome.  For the time being, the FDA has blocked the company from allowing individuals from having access to their own genetic information.  Will this change as part of the new initiative or not?
  • Drug/device industry:  Genetic research and development of treatments has been very promising and productive in the private sector.  How will government involvement affect research?  Will our governmental agencies work cooperatively with them or competitively?  Again, if the experience of 23 & Me is any indication, this is a real concern.
  • Healthcare Costs:  Yes, there’s potential to decrease costs, but there’s also potential in greatly increasing costs.  It’s no small feat to genetically map a population, analyze the information, store it safely and securely, and develop recommendations and treatments.

Part of me is excited about the potential and I think that it probably does take a huge governmental initiative to tackle and impact population health, but another part of me is concerned about government invading a space that is so personal and private and I wonder if it could slow down progress in developing life-saving therapies in the private sector.

What do you think?  Are you excited or nervous about President Obama’s Precision Medicine Initiative?